<table>
<thead>
<tr>
<th>Title</th>
<th>Monitoring iron chelation effect in hearts of thalassaemia patients with improved sensitivity using reduced transverse relaxation rate (RR2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Cheung, JS; Au, WY; Ha, SY; Jensen, JH; Kim, D; Ding, AY; Zhou, IY; Guo, H; Brown, TR; Chu, WC; Rasalkar, DD; Khong, PL; Brittenham, GM; Wu, EX</td>
</tr>
<tr>
<td>Citation</td>
<td>The 2010 ISMRM-ESMRMB Joint Annual Meeting, Stockholm, Sweden, 1-7 May 2010.</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2010</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/126026</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Monitoring Iron Chelation Effect in Hearts of Thalassaemia Patients with Improved Sensitivity Using Reduced Transverse Relaxation Rate (RR2)

J. S. Cheung1,2, W-Y. Au3, S-Y. Ha4, J. H. Jensen5, D. Kim1, A. V. Ding1,2, L.Y. Zhou1,2, H. Guo6, T. R. Brown4, W. C. Chu4, D. D. Rasalkar7, P-L. Khong8, G. M. Brittenham4, and E. X. Wu1,2

1Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, People's Republic of, 2Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, People's Republic of, 3Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, People's Republic of, 4Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, People's Republic of, 5Department of Radiology, New York University School of Medicine, New York, United States, 6Department of Radiology, Columbia University and New York Presbyterian Hospital, New York, United States, 7Department of Diagnostic Radiology and Organ Imaging, The Chinese University of Hong Kong, Hong Kong SAR, China, People's Republic of, 8Department of Pediatrics, Columbia University, New York, United States

Introduction
Accurate MRI characterization of myocardial iron is needed to improve the diagnosis and management of thalassaemia patients with transfusional iron overload. To prevent iron toxicity from inadequate chelation therapy and avoid the adverse effects of excessive chelator administration, reliable and sensitive monitoring of tissue iron is needed. In patients with iron overload, virtually all of the excess iron is sequestered within cells as short-term storage iron in ferritin (soluble nanometer-sized particles, dispersed and relatively uniformly distributed) and as long-term storage iron in hemosiderin (insoluble and clumped in irregular micron-sized clusters within siderosomes). Because cellular ferritin iron is in close equilibrium with the cytosolic iron pool involved in cellular injury, measurement of myocardial ferritin iron may be valuable in assessing iron toxicity. Myocardial R2* is predominately influenced by hemosiderin iron and changes only slowly, after months of iron-chelating therapy1. Our study examined a new transverse relaxation index, the reduced R2 (RR2) that is estimated from non-monoexponential signal decay2 and provides a measure of cellular ferritin iron. In thalassaemia patients examined at 3T, we found that RR2 could detect changes in myocardial ferritin iron after as little as 1 week (wk) of iron-chelating therapy.

Methods
Theory: In brief, the non-monoexponential CPMG signal decay in the presence of soluble and particulate iron is predicted to approximately follow:

\[
S(TE) = S_0 \cdot \exp(-RR2\cdot TE) \cdot \exp(-A_3/4 \cdot (ESP/2)^{3/4} \cdot TE^{3/8}),
\]

where \(S(TE)\) is the signal amplitude at time \(TE\), \(S_0\) is the initial signal amplitude and \(ESP\) is the interecho spacing. In tissues loaded with both ferritin and hemosiderin iron, RR2 is primarily sensitive to ferritin iron while \(A_3\) is predominately sensitive to hemosiderin iron3. MRI: A single-breathhold ECG-triggered turbo multi-echo spin-echo (MESE) sequence4-6 was implemented to measure CPMG signal decay on a 3T Philips MRI scanner with a 6-channel cardiac coil. One mid-ventricular short-axis slice with double-inversion black blood preparation was acquired with acquisition matrix = 128×96, turbo factor = 2, SENSE factor = 2, partial Fourier factor = 0.6, TR = 750-1200 ms, FOV = 370 mm, and slice thickness = 10 mm for 90° excitation and 30 mm for 180° refocusing. CPMG echo signal decays with 3 different interecho spacings (ESP) (5, 9 and 13 ms; 6 echo images each) were acquired to estimate RR2. The acquisition was repeated five times, and RR2 measurements were averaged. For comparison, R2* measurement was performed in the same slice location using a single-breathhold ECG-triggered multi-echo gradient-echo sequence (MEGE)7,8 with first TE = 1.55 ms, echo spacing 1 ms, echo number = 25, flip angle = 20°, turbo field echo factor = 4 and black-blood preparation. Patients and 1-wk suspension of iron chelation: Thalassaemia patients with transfusional iron overload (N = 8; mean age = 29.3 ± 8.6 yr) receiving regular iron chelation (deferoxamine, 30 to 50 mg/kg for 2 to 5 days weekly 3/4 deferoxamine, 55 to 95 mg/kg daily) were recruited. Cardiac MR was performed immediately before discontinuing iron chelation for 1 wk (Day 0), after 1-wk suspension of chelation (Day 7), and one week after resuming chelation (Day 14).

Data Analysis: Identical ROIs in septum were used with slight position adjustments to account for motion among different breathholds. CPMG MESE signal decay of 3 different ESPs were fitted to the non-monoexponential equation above with floating noise for RR2 measurement. R2 and R2* were measured by monoexponential fitting of signal decays (5 ms ESP for R2) with floating noise.

Results and Discussions
The sequence was first validated by measuring R2 in phantoms of varying concentrations of MnCl2 (0 to 1 mM with 0.1 mM increments) in 2% agarose gel, with 1s TR and 5 ms ESP. R2 increased linearly (R = 0.99) with MnCl2 concentrations, indicating the robustness of R2 measurement by the turbo MESE protocol implemented. The transverse relaxation was measured as 103.5 ± 1 mM-1 s-1 at 3T (in contrast to 73.6 ± 1 mM-1 s-1 previously reported for 1.5T for aqueous MnCl29).

Fig. 1. Typical ROI delineation in ventricular septum and the corresponding CPMG MESE signal decay of five repeated scans.

Fig. 2. Measured R2*, R2 (using 5 ms ESP), and RR2 values at Day 0 (iron regular chelation), Day 7 (off chelation for 1 wk), and Day 14 (on chelation again for 1 wk). Repeated measures ANOVA was performed with * for P < 0.05, ** for P < 0.01, n.s. for insignificance.

Conclusion
The experimental findings in this study demonstrated that RR2 measurement could detect myocardial iron changes associated with a brief (1 wk) suspension of iron-chelating therapy in thalassaemia patients. Therefore, MRI measurement of myocardial ferritin iron using RR2 may provide a new means of rapidly monitoring the effectiveness of iron-chelating therapy in transfusional iron overload.

References