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To address whether the heat transfer in nanofluids still satisfies the classical energy equation, we theoretically examine the
macroscale manifestation of the microscale physics in nanofluids. The microscale interaction between nanoparticles and base fluids
manifests itself as thermal waves/resonance at the macroscale. The energy equation that governs the heat transfer in nanofluids is of
a dual-phase-lagging type instead of the postulated and commonly-used classical energy equation. The interplays among diffusion,
convection, and thermal waves/resonance enrich the heat transfer in nanofluids considerably.

1. Introduction

Choi coined the term “nanofluids” for the fluids with
nanoelements (nanoparticles, nanotubes, or nanofibers)
suspended in them [1]. Recent experiments on nanofluids
have shown, for example, twofold increases in thermal
conductivity [2], strong temperature dependence of thermal
conductivity [3], substantial increases in convective heat
transfer coefficient [4, 5], and threefold increases in critical
heat flux (CHF) in boiling heat transfer [2, 3, 6]. State-
of-the-art expositions of major advances on the synthesis,
characterization, and application of nanofluids are available,
for example, in [2, 3, 6–12]. These characteristics make
them very attractive for a large number of industries such
as transportation, electronics, defense, space, nuclear systems
cooling, and biomedicine.

The study of nanofluids is still in its infancy [2, 3, 6–
12]. The precise nature and mechanism of the significant
improvement of thermal performance are still not known.
There is also a lack of agreement between experimental
results and between theoretical models. The fact that the
enhancement in thermal properties comes from the presence
of nanoparticles has directed research efforts nearly exclu-
sively towards thermal transport at nanoscale. The classical
conservation equations including the energy equation have

been postulated as the macroscale model of nanofluid
convective heat transfer but without adequate justification.
Thermal conductivity and convective heat transfer coefficient
are a macroscale phenomenological characterization of heat
transfer and their measurements are not performed at the
nanoscale, but rather at the macroscale. Therefore, interest
should focus not only on what happens at the nanoscale but
also on how the presence of nanoelements affects the heat
transport at macroscale.

We attempt to examine whether the classical energy
equation is adequate for describing convective heat transfer
in nanofluids at macroscale based on a macroscale heat
transfer model in nanofluids, which is rigorously developed
by scaling-up the microscale model for the heat transfer
in the nanoparticles and in the base fluids. The approach
for scaling-up is the volume averaging [13–15] with help of
multiscale theorems [15].

2. Macroscale Energy Equation

The microscale model for heat transfer in nanofluids is well
known. It consists of the field equation and the constitutive
equation. The field equation comes from the conservation
laws of mass, momentum, and energy. The commonly-used
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constitutive equation includes the Newton law of viscosity
and the Fourier law of heat conduction [16].

For transport in nanofluids, the macroscale is a phe-
nomenological scale that is much larger than the microscale
and much smaller than the system length scale. Interest in the
macroscale rather than the microscale comes from the fact
that a prediction at the microscale is complicated due to the
complex microscale structure of nanofluids, and also because
we are usually more interested in large scales of transport
for practical applications. Existence of such a macroscale
description equivalent to the microscale behavior requires a
good separation of length scales and has been well discussed
in [15, 17].

To develop a macroscale model of heat transfer in
nanofluids, the method of volume averaging starts with a
microscale description. Both conservation and constitutive
equations are introduced at the microscale. The resulting
microscale field equations are then averaged over a repre-
sentative elementary volume (REV), the smallest differential
volume resulting in statistically meaningful local averaging
properties, to obtain the macroscale field equations. In the
process of averaging, the multiscale theorems [15] are used
to convert integrals of gradient, divergence, curl, and partial
time derivatives of a function into some combination of
gradient, divergence, curl, and partial time derivatives of
integrals of the function and integrals over the boundary of
the REV.

Consider heat transfer in nanofluids with the continuous
base fluid and the dispersed nanoparticle denoted by c- and
d-phases, respectively. Note that the dispersed nanoparticles
can be liquid droplets for general nanofluids [10, 12]. As
a two-component mixture (base fluid + nanoparticles), its
microscale model can be written as [18]

∇ · vc = 0, in the c-phase,

ρc
∂vc
∂t

+ ρcvc · ∇vc

= −∇pc + ρcg + μc∇2vc, in the c-phase,

(
ρcp
)
c

∂Tc
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(
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)
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∂vd
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+ ρdvd · ∇vd
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)
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∂Td
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(
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)
d
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= ∇ · (kd∇Td), in the d-phase,

vc = vd, at Acd,

Tc = Td, at Acd,

ndc · kc∇Tc = ndc · kd∇Td, at Acd.

(1)
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Figure 1: Representative elementary volume (REV).

Here v and T are the velocity and the temperature, respec-
tively. ρ, cp, k, p, μ, and g are the density, specific heat,
thermal conductivity, pressure, viscosity, and gravitational
acceleration, respectively. Subscripts c and d refer to the
c- and d-phases, respectively. Acd represents the area of
the c-d interface contained in the REV, and ndc is the
outward-directed surface normal from the d-phase toward
the c-phase, (Figure 1). To be thorough, we must also specify
the initial conditions and the boundary conditions at the
entrances and exits of the REV; however, we need not do so
for our discussion.

Applying the volume averaging and multiscale theorems
to scale-up the microscale model yields a macroscale model
[12, 19], where the energy equation reads
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(2)

Here εi is the volume fraction of the i-phase (the index i can
take c or d), with Vi and VREV as the volume of the i-phase in
REV, and the volume of the REV respectively:

εi = Vi

VREV
. (3)
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The intrinsic average is defined by

〈Ψi〉i = 1
Vi

∫

Vi
ΨidV. (4)

Kcc, Kcd, Kdc, Kdd, ucc, ucd, udc, udd, and avh represent the
effects of microscale physics on the macroscale heat transfer.
The readers are referred to [12, 19, 20] for their governing
equations and numerical computations.

3. Results and Discussion

Rewrite (2) in their operator form:

⎡
⎣A B

C D

⎤
⎦
⎡
⎣〈Tc〉

c

〈Td〉d

⎤
⎦ = 0. (5)

where A = γc(∂/∂t)+γc〈vc〉c ·∇−ucc ·∇−∇·(Kcc ·∇)+avh,
B = −ucd ·∇−∇·(Kcd ·∇)−avh, C = −udc ·∇−∇·(Kdc ·
∇) − avh, and D = γd(∂/∂t) + γd〈vd〉d · ∇ − udd · ∇ − ∇ ·
(Kdd · ∇). We then obtain an uncoupled form by evaluating
the operator determinant such that
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(6)

where the index i can take c or d. γc = εc(ρc)c and
γd = εd(ρc)d are the c-phase and d-phase effective thermal
capacities, respectively. Its explicit form reads, after dividing
by avh(γc + γd),
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(7)

When the system is isotropic and the physical properties of
the two phases are constant, it reduces to
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where
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This is a dual-phase-lagging heat-conduction equation with
τq and τT as the phase lags of the heat flux and the
temperature gradient, respectively [15, 21, 22]. Here, F(r, t)
is the volumetric heat source. k, ρc, α, and 〈vcd〉cd are
the effective thermal conductivity, capacity, diffusivity, and
velocity of nanofluids, respectively. Therefore, the presence
of nanoparticles shifts the classical energy equation for the
heat transfer in the base fluid into the dual-phase-lagging
energy equation in nanofluids at the macroscale. This is
significant because all results regarding dual-phase-lagging
heat transfer can thus be applied to study heat transfer
in nanofluids [21, 22]. For the case of heat conduction in
nanofluids, the inclusion of the solid-fluid interface heat
transfer also leads to dual-phase-lagging heat-conduction
equation, which resolves the conflict between experimental
data of nanofluid thermal conductivity and classical theories
of effective thermal conductivity of suspensions [23].

It is interesting to note that there are nontraditional
convective terms −ucc · ∇〈Tc〉c − ucd · ∇〈Td〉d and −udc ·
∇〈Tc〉c − udd · ∇〈Td〉d in (2). In (8), however, such terms
disappear because of the constraint from the mass conser-
vation. Therefore, the microscale physics does not manifest
itself as the macroscale convection. The velocity-like terms
appear only in the source term in (8).

The presence of nanoparticles gives rise to variations
of thermal capacity, conductivity, and diffusivity, which are
given by, in terms of ratios over those of the base fluid,

ρc(
ρc
)
c

= (1− εd) + εd

(
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)
d(

ρc
)
c

,

k
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= kcc + kcd + kdc + kdd
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,

α

αc
= k

kc

(
ρc
)
c

ρc
.

(11)

Therefore, ρc/(ρc)c depends only on the volume fraction
of nanoparticles and the nanoparticle-fluid capacity ratio.
However, both k/kc and α/αc are affected by the geometry,
property and dynamic process of nanoparticle-fluid inter-
faces.

Consider

τT
τq
= 1 +

γ2
c kdd + γ2

dkcc − γcγd(kcd + kdc)

γcγd(kcc + kcd + kdc + kdd)
. (12)

It can be larger, equal, or smaller than 1 depending on the
sign of γ2

c kdd + γ2
dkcc − γcγd(kcd + kdc). Therefore, by the

condition for the existence of thermal waves that requires
τT/τq < 1[22, 24], we may have thermal waves in nanofluid
heat transfer when

γ2
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dkcc − γcγd(kcd + kdc)

=
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√
kdd − γd

√
kcc

)2

+ γcγd

(
2
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)
< 0.

(13)

A necessary (but not sufficient) condition for (13) is kcd +
kdc > 2

√
kcckdd. Note also that for heat transfer in nanofluids

the microscale physics yields a time-dependent source term
F(r, t) in the dual-phase-lagging energy equation ((8) and
(10)). Therefore, the resonance can also occur. These thermal
waves and possibly resonance are believed to be the driving
force for the enhancement of heat transfer. When kcd +
kdc = 0 so that τT/τq is always larger than 1, thermal waves
and resonance would not appear. The sum kcd + kdc is thus
responsible for thermal waves and resonance in nanofluid
heat transfer. It is also interesting to note that although each
τq and τT is avh-dependent, the ratio τT /τqis not. Therefore
the evaluation of τT /τq will be much simpler than τq or τT .

Therefore, the molecular physics and the microscale
physics (interactions between nanoparticles and base fluids
at the microscale in particular) manifest themselves as heat
diffusion and thermal waves/resonance at the macroscale,
respectively. Their overall macroscopic manifestation shifts
the classical energy equation for the heat transfer in the
base fluid into the dual-phase-lagging energy equation in
nanofluids. When τT/τq < 1, thermal waves dominate and
(8) is of a hyperbolic type [22]. When τT/τq ≥ 1, however,
heat diffusion dominates and (8) is parabolic [22]. Depend-
ing on factors like material properties of nanoparticles and
base fluids, nanoparticles’ geometrical structure and their
distribution in the base fluids, and interfacial properties
and dynamic processes on particle-fluid interfaces, the heat
diffusion, thermal waves/resonance, and convection may
either enhance or counteract each other. Consequently, the
heat transfer in nanofluids is endowed with much richer
features than that in the base fluid.

4. Concluding Remarks

In an attempt to determine how the presence of nanoparticles
affects the heat transfer at the macroscale and isolates the
mechanism responsible for the reported variation of thermal
properties, a macroscale energy equation is developed and
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examined analytically for nanofluid heat transfer. The model
is obtained by scaling-up the microscale model for the heat
transfer in the nanoparticles and in the base fluids. The
approach for scaling-up is the volume averaging with help
of multiscale theorems. The result shows that the presence of
nanoparticles leads to a dual-phase-lagging energy equation
in nanofluids at the macroscale. Therefore, the molecular
physics and the microscale physics manifest themselves
as heat diffusion and thermal waves at the macroscale,
respectively. Depending on factors like material properties
of nanoparticles and base fluids, nanoparticles’ geometrical
structure and their distribution in the base fluids, and
interfacial properties and dynamic processes on particle-
fluid interfaces, the heat diffusion, convection, and thermal
waves may either enhance or counteract each other, which
will enrich heat-transfer performance significantly.
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