
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1309

Joint Time Synchronization and Localization of an
Unknown Node in Wireless Sensor Networks

Jun Zheng and Yik-Chung Wu

Abstract—Time synchronization and localization are two im-
portant issues in wireless sensor networks. Although these two
problems share many aspects in common, they are traditionally
treated separately. In this paper, we present a unified framework
to jointly solve time synchronization and localization problems at
the same time. Furthermore, since the accuracy of synchronization
and localization is very sensitive to the accuracy of anchor timings
and locations, the joint time synchronization and localization
problem with inaccurate anchors is also considered in this paper.
For the case with accurate anchors, the joint maximum likelihood
estimator and a more computationally efficient least squares (LS)
estimator are proposed. When the anchor timings and locations
are inaccurate, a generalized total least squares (GTLS) scheme is
proposed. Cramér–Rao lower bounds (CRLBs) and the analytical
mean square error (MSE) expressions of the LS based estimators
are derived for both accurate and inaccurate anchor cases. Results
show that the proposed joint estimators exhibit performances
close to their respective CRLBs and outperform the separate time
synchronization and localization approach. Furthermore, the
derived analytical MSE expressions predict the performances of
the proposed joint estimators very well.

Index Terms—Anchor uncertainties, constrained weighted least
squares, generalized total least squares, localization, maximum
likelihood, time synchronization.

I. INTRODUCTION

T HE rapid advances in micro-electro-mechanical systems
make it possible to produce a large number of low-cost,

low-power and multi-functional tiny sensor nodes, and thus pro-
pels the implementation of modern large scale wireless sensor
networks (WSNs). Because of its wide applications in environ-
mental monitoring, natural disaster prediction, health care, man-
ufacturing and transportation, WSNs have attracted enormous
interests in recent years [1], [2].

In WSNs, synchronization supports functions such as
time-based channel sharing, power scheduling, and time-based
localization in WSNs. Various time synchronization methods
have been developed specifically for WSNs in the literature.
The most prominent methods are Reference Broadcast Syn-
chronization [6], Timing-sync Protocol for Sensor Networks
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(TPSN) [7], and Flooding Time Synchronization Protocol
(FTSP) [8]. Recently, Noh et al. mathematically evaluated
the performances of time synchronization methods based on
two-way message exchange [9].

On the other hand, localization is the basis of applications
which require accurate locations of the sensor nodes, such as
target and event tracking, emergency rescue and geographic
routing [1]. Among the current localization techniques, the
most accurate localization approaches are anchor and range
based methods. These methods usually use the time-of-ar-
rival (TOA), time-difference-of-arrival (TDOA) or received
signal strength (RSS) to compute the distances between nodes
and anchors, and then obtain locations of the nodes from the
calculated distances [3]–[5].

Traditionally, synchronization is mainly studied from pro-
tocol design of view [10], while localization is studied from
the signal processing point of view [3], [4]. As a result, these
two problems have been investigated separately for a long time.
However, the fact is that synchronization and localization have
very close relationships and share many aspects in common.
Furthermore, the accuracy of the time synchronization is a cen-
tral issue in time-based localization approaches, such as the
TOA based Two-way Ranging scheme in IEEE 802.15.4a stan-
dard [21]. As will be shown in the simulation results of this
paper, time-based localization cannot provide accurate location
estimates under inaccurate timings.

Based on the close relationships between time synchroniza-
tion and localization, it is natural to explore the possibility of
formulating them into a unified framework and solve the two
problems at the same time. Recently, some pioneering research
works noticed the similarities between the problem of time syn-
chronization and localization [12], [13]. However, they only
pointed out the links between the two problems and explored
the possibility of jointly implementing time synchronization and
localization in protocol level. Denis et al. took a step further in
[14] by solving the two problems together in the physical layer.
Unfortunately, strictly speaking, [14] cannot be categorized as
joint approach since time synchronization is performed first and
localization is carried out based on the synchronization results.
In this paper, we propose a unified framework to jointly synchro-
nize the unknown nodes and locate them to the anchors simul-
taneously. In particular, in the first half of the paper, where the
anchors’ timing and location information is assumed to be accu-
rate, the maximum likelihood (ML) estimator and a low-com-
plexity least squares (LS) based estimator are derived.

In WSNs, hierarchical method is usually used to synchronize
and localize a large sensor field. Some sensor nodes are synchro-
nized and localized to the anchors first, and then they become
new anchors and are used to synchronize and localize other
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nodes. This procedure is repeated until all nodes are synchro-
nized and localized [7], [15]. Unfortunately, this hierarchical
synchronization and localization method results in error prop-
agation due to the inaccuracy of estimations at each level. In
this case, taking the uncertainties of anchor timing and location
into account is important for error propagation relief. Ho et al.
considered the anchor errors in the scenario of localization [16].
However, there is no reported work considering anchor error in
time synchronization. In the second half of the paper, both the
timing and location uncertainties of anchors are incorporated in
the system model, and a novel estimator is proposed based on
the generalized total least squares (GTLS) method. Notice that
the hierarchical time synchronization and localization method
we consider in this paper is a centralized approach in the sense
that the procedure starts from the anchors and proceeds to the
next level. It is different from many distributed time synchro-
nization techniques, such as clock consensus and gossip aver-
aging, where no reference node is needed [17]–[19].

In addition to estimator derivations, the performances of
the proposed algorithms are also analyzed in this paper. The
Cramér–Rao lower bounds (CRLBs) are derived for both cases
with accurate and inaccurate anchor information. Furthermore,
analytical mean square error (MSE) expressions are derived for
the two proposed LS based schemes.

The rest of the paper is organized as follows. The system
model is introduced in Section II, followed by the ML esti-
mator and the proposed low-complexity estimator in Section III.
Joint time synchronization and localization with anchor uncer-
tainties is discussed in Section IV. The CRLBs and MSE per-
formances of the proposed estimators are derived in Section V.
In Section VI, simulation results are presented. Finally, conclu-
sions are drawn in Section VII.

Notations: The following notations are used in this paper. The
special matrices , , and denote the
matrix of ones, matrix of zeros, identity matrix, and

vector of alternating 1 and 1, respectively. The oper-
ators , , and denote the Kronecker product, the
Hadamard product (i.e., element by element product), the trace
of a square matrix and the transpose of a matrix, respectively.
The Euclidean norm of a vector and Frobenius norm of a matrix
are denoted as and , respectively, while is the
absolute value of a scalar or the determinant of a matrix. The
operator is the expectation of a random variable or matrix,

is a matrix with and on its diagonal and all
other elements zero.

II. SYSTEM MODEL

In this paper, we consider hierarchical hop-by-hop time syn-
chronization and localization in a sensor network, and focus our
study on the scenario that only one node needs to be synchro-
nized and localized to the anchors at a time. In the considered
system, it is assumed that there are anchors with
known timings and locations. The anchor is located at

with time skew and time offset . The
node to be synchronized and localized is denoted as Node
with unknown location , time skew and time
offset .

Fig. 1. Two-way time-stamp exchange between Node� and the � anchor� .

Node and the anchors exchange time-stamps based on
two-way message exchanges [9] as shown in Fig. 1. Assume
there are rounds of two-way message exchanges between
Node and anchor . During the round exchange, a
message is sent from Node at time and is received by
at time . Then, anchor replies Node with another mes-
sage sent at and is received by Node at . In the reply
message from anchor to Node , the received time-stamps

and at the anchor side are also included. Therefore,
after the round of message exchange, Node has all the
time-stamp information . Note that
and are measured with respect to the clock of anchors,
while and are measured with respect to the clock of
Node . In this paper, we focus on the line-of-sight (LOS)
propagation between Node and the anchors, and the ex-
changed time-stamps can be modeled as [20]

(1)

(2)

where is the propagation delay between Node
and anchor , with being the speed of light. Symbols

and are the TOA detection errors, which are Gaussian
distributed [14]. With the impulse-radio ultra-wideband tech-
nology and physical layer time-stamping, the TOA detection er-
rors are in the order of nanosecond (ns) [21]. The goal of joint
time synchronization and localization is to estimate , , and

of Node based on the observed time-stamps in (1) and (2),
and the anchor locations and timing , , and .

III. JOINT TIMING AND LOCATION ESTIMATION ALGORITHMS

Without loss of generality, it is assumed in this section that all
the anchors are synchronized to the same reference time, and
thus the time skew and time offset for all anchors are
and , respectively. Therefore, (1) and (2) becomes

(3)

(4)

In this section, the ML joint timing and location estimator is
first derived based on (3) and (4). However, it is found that a
two-dimensional search is needed to obtain the solution for the
ML estimator. In order to avoid the computationally expensive
numerical search, in the second part, we propose a low-com-
plexity two-stage LS estimator.
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A. Maximum Likelihood Estimator

Dividing both sides of (3) and (4) by and introducing two
new variables and , we have

(5)

(6)

Collecting all the round of exchanged time-stamps from the
anchor, and introducing , we can put (5) and (6)

for the anchor into a matrix form

(7)

where , and
. The vectors

(8)

include the time-stamps at the anchor side and the Node
side, respectively. Stacking the and from all an-
chors, we have

(9)

where , ,
and .

Since the error vector is Gaussian distributed, the joint prob-
ability density function (PDF) of the observations

(10)
conditioned on the unknown vectors is given by

(11)

where is the covariance matrix of the error vector . The
ML estimate of and can be obtained by minimizing [22]

(12)

When is fixed, the minimizing is

(13)

Inserting (13) back to (12), after some straightforward manipu-
lation, the location can be estimated as

(14)

where , and
is the weighted Euclidean norm.

The final estimate of is obtained by inserting the result of
(14) back to (13). The two dimensional optimization problem in
(14) can be solved by alternating projection as has been reported
in [23].

B. Efficient Least Squares Estimator

The above ML method involves solving a two-dimensional
nonlinear optimization problem. Although the alternating
projection is much more efficient than exhaustive search, it is
still computationally expensive and poses a serious problem for
the energy constrained sensors. In this subsection, we propose
a computationally efficient two-step LS approach, in which
closed-form solution exists, to estimate the timing and location
parameters of the sensor.

1) Linearization Step: Move the term in (5) and (6) to one
side and other terms to the other side, square the two equations
and re-arrange them, we have

(15)

(16)

where

(17)

(18)

include all the terms involving and .
By introducing three additional variables ,

, and defining a new vector
, (15) and (16) with

can be put into a matrix form as

(19)

where

...

... (20)

and . By stacking all the equa-
tions for together, we have

(21)
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where , , and
.

Solving (21) in LS sense, we can obtain an estimate of as

(22)

However, note that (22) only provides a rough estimate of the
unknown vectors and , because of two reasons. First, the
estimator (22) assumes all the components in the measurement
error vector have the same variances, while it is obviously not
the case as can be seen from (17). Second, there is no constraints
applied between the elements of in (22), and thus the estimate
may be inconsistent. Next, we propose a second step to improve
the estimate of (22) based on the above two observations.

2) Refinement Step: Notice that the second-order terms in
the noise vector can be ignored because and are usu-
ally very small. Therefore, from (17), can be approximated
by , where . The
covariance matrix of the noise vector can then be derived
as . Notice that depends on and

, which are also parameters of interest. Fortunately, we can
use the rough estimate in (22) of step 1. The weighted least
square (WLS) solution of (21) is then given by

(23)

where is with and replaced by and from (22).
Next, the relationships between elements of are exploited,

which can be put into the following matrix form:

(24)

where

(25)

and is the estimation error in . Together
with the fact that the estimation covariance of is

[22], the WLS solution of (24) is

(26)

Notice that the proposed CWLS estimator (26) is in closed form
and does not need a searching step as in the ML estimator (14).
The final estimates of and are obtained from the estimates

and in (26) by and .

IV. JOINT SYNCHRONIZATION AND LOCALIZATION WITH

ANCHOR UNCERTAINTIES

In WSNs, when a large number of sensors need to be synchro-
nized or localized, it is a common procedure that synchroniza-
tion and localization are performed level by level [7]. The sensor
nodes closest to anchors are synchronized and localized first.
Then, they become the new anchors and other nearby sensors
perform synchronization and localization with the new anchors.
This process is repeated until all the nodes are synchronized and
localized.

Because of this level-by-level procedure, the new anchors do
not have perfect timing and location information of their own.
We refer the inaccuracies of the anchor timing and location as
anchor uncertainties. If we use these new anchors to synchronize
and localize other nodes in the sensor network, it is important
to take the anchor uncertainties into account.

A. Model of Uncertainties and ML Estimator

When there are anchor uncertainties, we can only have the
observed (but not true) values of the location, time skew and
time offset of anchors

(27)

where , , are the uncertainties
in the anchor’s location, time skew and time offset, respec-
tively. It is assumed that , , and are Gaussian dis-
tributed. Notice that the errors in the anchor timings and loca-
tions are unnecessarily independent, depending on how the tim-
ings and locations of the anchors are estimated. For example,
if the timings and locations of anchors are estimated by the
joint estimator in Section III, the anchor timing and location
errors are actually correlated. On the other hand, if the tim-
ings and locations of anchors are estimated separately using dif-
ferent observations, the estimation errors can be uncorrelated.
In order to keep the discussion more general, all the measured
anchor timings and locations are grouped into a vector

with the true (but
unknown) value denoted as , and whose covariance matrix is
denoted by . It is assumed that the covariance matrix of the
anchor uncertainties is known.

Dividing both sides of (1) and (2) by , the equations for
the anchor can be grouped into

, where and were
defined in (8), and was defined when introducing (7). Further,
stacking the equations for all anchors, we have

, where

...
...

... (28)

Because all the measurement errors are Gaussian and the er-
rors in observed time-stamps are independent of errors in an-
chor timing and location parameters, the logarithm of the joint
PDF of the observed time-stamps, anchor timings and locations
is then given by

(29)

where is a constant, and and were introduced in (10).
As can be seen from (29), the joint PDF includes the terms

of anchor timing and location uncertainties. Therefore, the ML
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joint synchronization and localization involves the maximiza-
tion with respect to timings and locations of both the unknown
node and anchors. Depending on the number of anchors, the
problem can be a very high dimensional maximization problem.
Even if it is solvable, the ML estimation requires a lot of com-
putations. In the next subsection, we propose a low complexity
method instead.

B. Proposed Low-Complexity Least Squares Estimator

Taking anchor uncertainties into account, the exchanged
time-stamps in (1) and (2) become

(30)

(31)

Dividing both sides of (30) and (31) by , and using the first-
order Taylor series approximation

, we have

(32)

(33)

where we have neglected the second-order terms of the anchor
timing errors.

Representing as and using the
same linearization procedure as in Section III-B, (32) and (33)
can be formulated into a linear equation as

(34)

where and with
(35) and (36), shown at the bottom of the page. The perturbation
terms in (34) are given by

(37)

(38)

and the error vector with

(39)

(40)

where represents the second-order terms of the anchor uncer-
tainties and TOA detection errors. Note that when there is no
uncertainty in the anchors and the true anchor timing parame-
ters are and , (34) reduces to (21).

Because and in (37) and (38) are unknown, the true
system model (34) should be replaced by the following obser-
vation model

(41)

Equation (41) can be interpreted as a linear system with model
error in the model coefficient matrix . The generalized total
least square (GTLS) technique can be employed to provide con-
sistent estimate of [25]. The GTLS method aims to find a so-
lution that minimizes the total weighted error in the expanded
matrix . For notational simplicity, the coefficient matrix
is first permutated by a permutation matrix such that only the
right most columns of are subject to errors:

(42)

where (permutated version of ) can be partitioned into
, with (the first two columns of ) subject to errors,

... (35)

... (36)
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and (the rest of the columns of ) free of error. For GTLS
method, the minimization of weighted error in both and is
represented by [24]

(43)

where is the covariance matrix of (with )

(44)

symbol represents the range space of a matrix, and
is the Cholesky decomposition of . In (44), the expressions
for the 2 2 matrix , 2 1 vector , and the scalar
are derived in the Appendix and are given by (80)–(82). Once
a that minimizes the objective function in (43) is found,
then any satisfying is a GTLS solution to the
problem in (42).

From [25], the closed-form solution of the GTLS problem
(43) is

(45)

where , and
is the smallest generalized singular value of the matrix pair

.
After the GTLS solution is obtained, the relationship between

elements of can be written similarly as that in (24)

(46)

where is the estimation error in , and

with obtained by replacing the esti-
mates of , , and in of (25) with their corresponding
estimates in of (45).

To carry out the refinement in (46), the estimation covariance
of , defined as ,

is needed. With the expression of in (45), we have

(47)

where . The correction effect of
and leads to [24]

(48)

where with and are and with accurate an-
chor locations and timing, respectively. Substituting (48) back
into (47) we have

(49)

where we have used the fact that . Using (49), the
covariance matrix of is calculated as

(50)

where is the covariance matrix of and is given
by (74) in the Appendix. The constrained problem in (46) is
therefore solved as

(51)

Remark 1: In implementation, the closed-form solution in
(45) is typically not used to solve the GTLS problem because
it is generally numerically unstable. A numerically stable and
efficient procedure for obtaining the GTLS solution, which does
not involve any matrix inversion, is presented in [25].

Remark 2: Some approximations are needed in carrying out
the proposed algorithm. The calculation of requires the true
values of and . Furthermore, the compu-
tation of covariance in (50) requires , which in turn
requires the accurate locations of anchors. In practice, and
are approximated by their nominal values 1 and 0, respectively,
and is approximated by , where
the accurate anchor locations in are approximated by their
observations in . The performance degradation due to the ap-
proximation in weighting matrices is insignificant as has been
demonstrated in [26].

Remark 3: By ignoring the anchor uncertainties in (41), we
can also apply the LS based algorithm (26) in Section III-B and
obtain the following estimate:

(52)

where is obtained by replacing the estimates of , , and
in of (25) with their corresponding estimates in

.
Summary: The proposed low-complexity LS estimator under

anchor uncertainties is summarized as follows.
1) Formulate the observation model (41).
2) Compute the GTLS solution (45) using the numerical

method given in [25].
3) Refine the GTLS solution by (51).

V. PERFORMANCE ANALYSES

In order to provide a performance reference for the proposed
estimators, the CRLBs of the joint synchronization and local-
ization problem for both cases with accurate and inaccurate an-
chors are derived. The analytical MSEs of the proposed LS es-
timators are also derived. To distinguish the two proposed LS
algorithms in Sections III and IV, we refer the LS algorithm in
(26) as LS-I and that in (51) as LS-II, respectively.
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A. CRLB With Accurate Anchors

With and the joint PDF in (11), the CRLB
can be derived as [22]

(53)

where , and the second equality above is ob-
tained after taking the expectation. The partial derivative can be
computed as

(54)

where

(55)

Therefore, . Note that, as special
cases, the CRLB of location estimate with perfect timing and
the CRLB of timing estimate with perfect location are given
by and

, respectively.

B. CRLB With Anchor Uncertainties

With the joint PDF in (29), the CRLB of is
derived as [22]

(56)

where

(57)

with . The partial derivatives in the above equa-
tions are derived as

(58)

where

(59)

with defined in (8).

Using the matrix inversion lemma, the CRLB for is given
by

(60)
From the above expression, we can see that, the first term in (60)
is the CRLB for when the anchor timings and positions are
accurate, and the second term represents the increase in CRLB
of when there are uncertainties in the anchor timings and
locations.

C. MSE Analysis for LS-I

The covariance matrix for the estimation of
in (26) can be derived as [22]

(61)
The variances of , , , and are then given by the four
diagonal elements of . In order to derive the variances
of the original synchronization parameters and , note that

and are functions of and defined by

(62)

Using the first-order Taylor series expansion, the Delta method
[27] approximates the variances of and by

(63)

(64)

where (the third diagonal element of ) is the
estimation variance of in LS-I, and is the covariance ma-
trix of in LS-I, which is the lower right 2 2 submatrix of

.
When the LS-I algorithm is applied to the case with anchor

uncertainties, the solution is given by (52) and the covariance
matrix of the estimation of is given by

(65)

The variances of , are given by the first two diagonal elements
of . The variances of and are obtained similarly as
in (63) and (64) but with replaced by the third diagonal
element of and replaced by the lower right 2 2
submatrix of .

D. MSE Analysis for LS-II

The covariance matrix of the estimation of in (51) is

(66)
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and the variances of , , , and are then given by the four
diagonal elements of . Similar to the derivations in the
above subsection, the approximated variances of and are

(67)

(68)

where (the third diagonal element of ) is the
estimation variance of in LS-II and is the lower right
2 2 submatrix of .

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are presented to verify the
effectiveness of the proposed schemes. In the simulations, there
are three anchors located at (5, 9), (19, 21), and (35, 3), with
the unit of meter (m). The location of Node is randomly
generated from a square region with and randomly drawn
from [0, 15] m. Notice that this region mostly lies outside of
the triangle formed by the three anchors. The time skew is ran-
domly drawn from [0.998, 1.002], and the time offset is ran-
domly drawn from [1, 10] ns. The number of round of two-way
message exchange is set to unless stated otherwise. The
TOA detection error and are independent and iden-
tically distributed (i.i.d.) Gaussian random variables with zero
mean and variance [14]. The MSEs of the location, time skew
and time offset estimations are defined as ,

and , respectively. All simulation
results are average of 1000 independent runs.

A. With Accurate Anchors

The case when timings and locations of the anchors are all
accurate is considered first. In Fig. 2, the MSEs of the ML es-
timator and the proposed LS-I estimator are plotted versus the
TOA detection error variance. In addition, the CRLB, the analyt-
ical MSE of LS-I, and the localization performance of the sep-
arate time synchronization and localization approach are also
shown. The separate approach is a combination of two recent
techniques. More specifically, the two-way ranging (TWR) in
IEEE 802.15.4a standard [21] is used for localization, and the
Gaussian ML-like estimator (GMLLE) in [9] is used for time
synchronization.

From Fig. 2, it can be seen that the separate approach only
provides good estimates when is small. However, when

is large, it reaches an error floor very quickly. Although the
accuracy provided by the TWR may be sufficient in some appli-
cations, the joint approaches (ML and LS-I) follow the trend of
the CRLB without incurring error floor. In particular, the ML es-
timation performance touches the CRLB. For LS-I, although it
cannot reach the CRLB, the degradation is small. Furthermore,
the analytical MSE expression derived for LS-I predicts the sim-
ulated performance very well. Fig. 3 shows the corresponding
results of time skew and time offset estimations, illustrating that
the ML is efficient. It can also be seen that, with accurate an-
chors, both LS-I and the separate approach have close to optimal
timing estimation performances.

Fig. 2. MSE of location estimates versus TOA detection error variance ��� ,
with accurate anchors.

Fig. 3. MSE of � and � estimates versus TOA detection error variance ��� ,
with accurate anchors.

B. With Anchor Uncertainties

Figs. 4 and 5 show the CRLBs (under both accurate and in-
accurate anchors) and the MSEs of various algorithms versus
TOA detection error variance in the presence of anchor uncer-
tainties. The variances of uncertainties in anchor locations, time
skew and time offset are 40 dB, 70 dB, and

20 dB, respectively. For simplicity, we consider the
case that uncertainties in anchor locations, time skews and time
offsets are independent.

It can be seen that there are observable degradations in
CRLBs when the anchors are inaccurate compared to the
CRLBs with accurate anchors. For location estimation, the
proposed LS-II provides more accurate estimation than LS-I
and the separate approach especially when is large, and
the performance gap between LS-II and the CRLB is not sig-
nificant. Furthermore, the performance of the proposed LS-II
is well predicted by the analytical MSE expression. For timing
estimation, LS-I and LS-II perform similarly and are close
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Fig. 4. MSE of location estimates versus TOA detection error variance ��� ,
with anchor location error variance ��� � 40 dB, and anchor timing error
variances ��� � 70 dB and ��� � 20 dB.

Fig. 5. MSE of � and � estimates versus TOA detection error variance ��� ,
with anchor location error variance ��� � 40 dB, and anchor timing error
variances ��� � 70 dB and ��� � 20 dB.

to optimal, while the separate approach suffers observable
degradation.

Fig. 6 illustrates the location estimation performances of var-
ious algorithms as a function of time skew uncertainty, when
variances of TOA detection error, uncertainties in anchor lo-
cations and time offset are 20 dB, 40 dB,
and 20 dB, respectively. It is clear that when the time
skew uncertainty decreases (i.e., increases), the perfor-
mances of LS-I and LS-II tends to converge to stable values not
far from the CRLB with inaccurate anchor. However, the con-
vergence speed of the LS-II is much faster than that of LS-I.
On the other hand, the location estimation accuracy of separate
approach does not improve much as the time skew uncertainty
decreases.

With the same setting as in Fig. 6, Fig. 7 shows the corre-
sponding performances for time skew and time offset estima-
tion. It can be seen that LS-I and LS-II perform very close to

Fig. 6. MSE of location estimates versus anchor time skew uncertainty vari-
ance ��� , with TOA detection error variance ��� � 20 dB, anchor lo-
cation error variance ��� � 40 dB and anchor time offset error variance
��� � 20 dB.

Fig. 7. MSE of � and � estimates versus anchor time skew uncertainty vari-
ance ��� , with TOA detection error variance ��� � 20 dB, anchor lo-
cation error variance ��� � 40 dB and anchor time offset error variance
��� � 20 dB.

CRLB. While the separate approach also follows the trend of
CRLB, it shows a noticeable performance gap, especially in
time offset estimation. When we vary the anchor location un-
certainty variance or time offset uncertainty variance
and evaluate the localization and synchronization performances
of different algorithms, conclusions similar to those in Figs. 6
and 7 can be drawn. Therefore, the results are not repeated here.

Finally, the location and timing estimation performances of
LS-I and LS-II versus the number of message-exchange round
are illustrated in Figs. 8 and 9, respectively. These figures are
generated with variances of TOA detection error, anchor lo-
cation, anchor time skew and anchor time offset errors set to

30 dB, 50 dB, 80 dB, and
20 dB, respectively. It can be seen that as the number of mes-
sage-exchange increases, both location and timing estimation
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Fig. 8. MSE of location estimates versus number of message exchange round,
with TOA detection error variance ��� � 30 dB, anchor location error vari-
ance ��� � 50 dB, anchor time skew error variance ��� � 80 dB, and
anchor time offset error variance ��� � 20 dB.

Fig. 9. MSE of timing estimates versus number of message exchange round,
with TOA detection error variance ��� � 30 dB, anchor location error vari-
ance ��� � 50 dB, anchor time skew error variance ��� � 80 dB, and
anchor time offset error variance ��� � 20 dB.

performances converge quickly to stable values. When more
than four rounds of message exchanges are used, the estimation
performance improvement is marginal.

VII. CONCLUSION

In this paper, a unified framework which jointly solves the
time synchronization and localization problems in WSNs was
proposed. We considered two cases in detail. In the first case, an-
chor locations and timings are assumed to be accurate. The max-
imum likelihood (ML) estimator was derived first. However, it
is not in closed-form and therefore computationally expensive.
Then, an efficient two-stage least squares based closed-form es-
timator (LS-I) was proposed. The second case we considered is

when anchor timings and locations are not accurate. The system
can be modeled as a linear equation with errors in the model ma-
trix. A generalized total least squares based scheme (LS-II) was
proposed to tackle the anchor uncertainties. Cramér–Rao lower
bounds (CRLBs) and the analytical mean square error (MSE)
expressions for the proposed LS-I and LS-II algorithms were
also derived.

Results show that, in both cases with accurate anchors and
with anchor uncertainties, the proposed joint time synchro-
nization and localization approach outperforms the separate
approach. The proposed LS-I and LS-II provide close to op-
timal performances in their respective scenarios. Furthermore,
the performances are accurately predicted by their analytical
MSE expressions.

APPENDIX

DERIVATION OF AND

For notational simplicity, we define the following symbols.
The errors in anchor timings and locations are grouped to-
gether and denoted as

with covariance matrix .
The observed coordinates, coordinates, time skews
and time offsets of anchors are ,

, and
and their error vectors are denoted as

with covariance matrix ,
with covariance matrix ,

with covariance matrix , and
with covariance matrix , re-

spectively. Moreover, the cross-correlation matrices between
different error vectors are defined as ,

, , , and
. The covariance matrix of each measured

anchor location vector is defined as . Note that
elements of , , , , , , , , and

can be determined from . Furthermore, we also define
.

Derivation of : Recalling the definition of in (39) and
ignoring the second-order errors, can be represented as

(69)

where

(70)

(71)

(72)

and and were introduced in (10). Similarly, in (38)
can be represented as

(73)
where and .
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The covariance matrix of is given by

(74)

where

(75)

(76)

(77)

(78)

Derivation of : It is assumed that the TOA detection error
is uncorrelated to the anchor timing and location error ,

because the errors are from different sources. Therefore, the co-
variance matrix of is

(79)

Recall the definitions of and in (37) and (38), and with
, the items in (79) can be shown to be

(80)

(81)

(82)

where

(83)

(84)
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