A Pilot Study on the Validity and Reliability of the Patient Enablement Instrument (PEI) in a Chinese Population

Cindy LK Lam, Natalie YK Yuen, Stewart Mercer, Wendy Wong

Family Medicine Unit, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong

Family Medicine Unit, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong

Department of General Practice & Primary Care, Faculty of Medicine, University of Glasgow, 1 Horselethill Road, Glasgow G12 9LX, Scotland, UK

Family Medicine Unit, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong

Correspondence

Natalie YK Yuen

Family Medicine Unit (HKU), 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong

Telephone (852) 2518 5657

Fax (852) 2814 7475

Email nykyuen@gmail.com

ABSTRACT

Background: The Patient Enablement Instrument (PEI) was developed to measure patients’ enablement, which is an indicator of the effectiveness of a primary care consultation, however to date the PEI has not been tested in Asian populations.

Objectives: The purpose of this study is to test the acceptability, validity, reliability and other psychometric properties of a Chinese (HK) translation of the PEI in Chinese patients in Hong Kong, and whether these properties would be affected by different timing of administration.

Methods: A Chinese (HK) translation of the PEI was developed by iterative forward-backward translations and the content validity was assessed by a cognitive debriefing interview with 10
Chinese patients. It was then administered to 152 adult patients attending a Government-funded primary care clinic in Hong Kong both immediately after the consultation, and two to three weeks later by telephone. Internal construct validity was assessed by item-scale correlations and factor analysis, test-retest reliability was assessed by intra-class correlation (ICC), and sensitivity was assessed by known group comparison.

Results: The Chinese (HK) PEI was semantically equivalent to the original PEI for all items. Acceptability of the PEI was high with 83.1% response and 100% completion rates. Statistical analyses showed no difference between test and re-test means as well as good reproducibility (ICC 0.75). Internal reliability determined by Cronbach’s alpha was greater than 0.8 irrespective of timing of administration. Scale construct validity was confirmed by strong (r >0.4) item-scale correlations and resumed to a one-factor hypothesized structure. PEI scores were significantly higher in younger patients supporting sensitivity. There was no significant difference in the psychometric properties or scores between the assessment results from immediately after, and two-weeks post consultation.

Conclusion: A Chinese (HK) translation of the PEI equivalent to the original is now available for application to Chinese populations. Pilot testing supported its acceptability, validity, reliability and sensitivity. Further studies to confirm its construct validity and responsiveness will help to establish the Chinese (HK) PEI as an outcome measure of the effectiveness of primary care consultations in Chinese patients.

TRIAL REGISTRATION

The research was registered with the HKU Clinical Trial Centre Registry (HKCTR-477)

KEY WORDS

Patient enablement, Primary Care, Content validity, Reliability, Chinese
INTRODUCTION

The clinical encounter between patient and practitioner is the core activity of all systems of health care. As such, the practitioner-patient relationship has been extensively investigated in conventional care, particularly in the primary care setting.\(^1\)\(^-\)\(^4\) However, whilst various methods exist to measure the effectiveness of primary care consultations, few exist to measure the effectiveness of interpersonal care in primary care.\(^5\) Many primary care consultations are for problems which are self-limiting, for which a favourable biomedical outcome can be anticipated regardless of the activities of the doctor. On the other hand, a large number of consultations are for multi-dimensional problems, where physical, psychological and social elements as well as the need for health promotion interact in a complex way that traditional clinical outcomes are not sensitive enough to capture.\(^6\)

There is some evidence to suggest that there is a positive link between patient-centred consultations and health outcomes.\(^2\)\(^-\)\(^3\)\(^,\)\(^7\) Two core values of family medicine are patient-centred care and holism,\(^8\) upon which is built the concept of patient enablement, first articulated by Howie et al.\(^9\)\(^-\)\(^10\) ‘Enablement’ describes a consultation outcome that reflects the extent to which patients understand their health problems and feel able to cope with them as a result of the consultation. According to Wensing, patients find it very important to be able to understand the nature of their problem and manage their own illness,\(^11\) which supports the concept of enablement as a patient-centred health-related benefit resulting from the consultation.

Howie’s theory of quality of care implies that greater enablement is achieved when the patient’s needs are identified, acknowledged and dealt with in the appropriate context.\(^12\) It recognises the importance of themes of patient centeredness and empowerment, and of the patient’s ability to understand and cope with their health and illness, and recognised these issues as being conceptually
distinct from satisfaction. The original version of the Patient Enablement Instrument (PEI) was developed by Howie et al based on these concepts to assess the ‘enablement’ of patients after a consultation with their primary care clinician. The PEI has six questions: able to cope with life; able to understand your illness; able to cope with your illness; able to keep yourself healthy; confident about your health; able to help yourself. Each question has four response options: much better/better (questions 1-4) or much more/more (questions 5-6)/ same or less/ not applicable. The PEI is intended to be a measure of the effectiveness of primary care consultations, and has been used for this purpose in several studies in Western countries, including the England, Scotland, Croatia, the Netherlands, and Poland.

Previous studies have shown that patient enablement may be increased by doctor’s empathy, familiarity of the patient with the practitioner, positive patient evaluation of the doctor’s communication, as well as longer consultation duration and appropriate doctor training. In turn, patient enablement results in greater compliance with therapy and improved outcomes, as well as increased well-being up to one month post-consultation. A six-week programme enabling patients with chronic disease in Hong Kong showed that Chinese patients undergoing the programme exhibited significantly higher self-efficacy in managing their illness and felt more energetic, the results of which supported the validity and relevance of the concept of enablement in Chinese culture. In contrast, low enablement is associated with a lack of continuity of care, poor self-perceived health, low educational level, and low quality of life.

Hong Kong’s health system is a combination of a tax-funded health model combined with a private sector, which account for 56% and 44% of health care spending respectively. Total expenditure on health care amounts to approximately 5.6% of the gross domestic product. Hong Kong has no mandatory primary care network, which means that patients are free to choose to consult doctors of
any specialty, which results in a lack of gate-keeping, increased doctor shopping, and increased healthcare costs.

Ninety-five percent of Hong Kong’s population is Chinese and for 91% of the population, the first language is Cantonese. The culture of consultation is traditionally seen as paternalistic, with little chance for conversation or joint decision making by patient and doctor. Chinese society often embodies collectivism and power distance which means that patients rarely assert individual rights during their consultations, and that they often behave deferentially towards doctors. While their dissatisfaction with doctor-centred consultation may not be evident during the consultation, it is exhibited by the high rate of doctor-shopping and increased consultation rate. One study found that patients in Hong Kong preferred patient-centred consultations, regardless of differences in their age, income, education, housing and sex.

There is very little research on patient-centred care or enablement in Chinese populations. The PEI would be a very useful tool for the evaluation and enhancement of patient enablement in the consultation in order to shift the doctor-dependent paradigm in this part of the world. For a patient-reported outcome measure to be used in Hong Kong, it must first be translated into Chinese and then tested for cross-cultural equivalence, validity and psychometric adequacy. The PEI has never been tested in an Asian population, and the data on its psychometric properties in any populations is rather limited.

The aim of our study was to develop a Chinese (HK) equivalent translation of the PEI and to evaluate its acceptability, validity and reliability in Chinese patients. We wanted to confirm that the items of the PEI were valid indicators of the underlying construct and that they share a common principal factor in order to justify direct summation of the item scores. In addition, we wanted to find out
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

whether the Chinese (HK) PEI results would be influenced by patient characteristics and timing of its administration. Results showing the validity and reliability of the PEI in our Chinese population would support its use in other Chinese populations and adaptation of the PEI to other Asian cultures.

METHODS

Development of the Chinese (HK) PEI and Evaluation on Content Validity

The Chinese (HK) translation of the PEI was developed according to an internationally recommended method. Two professional translators, who were native speakers of Chinese, translated the original English PEI into Chinese independently. A panel consisting of the translators and two bilingual authors (CLKL and WW) reviewed the translations to form the first draft of the Chinese (HK) PEI. Another professional translator blind to the original PEI back-translated this first draft to English. The back translation was assessed for equivalence to the original by one of the authors who is a native English speaker familiar with the original PEI (SM). Discrepancies between the original English language PEI and the back-translation of the first draft Chinese (HK) PEI were reviewed and revised by the panel (Appendix 1). Cognitive debriefing on the second draft was performed with ten Chinese patients to assess the clarity and interpretation of each item and response option. The cognitive debriefing subjects were a convenient sample balanced for age and sex recruited among attendees of a Government primary care clinic in Hong Kong. The final version of the Chinese (HK) PEI (Appendix 2) was then used to collect data for psychometric testing.

Subjects

All patients aged 18 years or more consulting one randomly selected doctor in an average size Government-funded primary care clinic in Hong Kong from 20 April to 9 May 2009 were included. The clinic is a teaching practice with three to four doctors consulting in any one session. It is situated in an urban, low socioeconomic district of Hong Kong. Patients present with similar
problems to other Government clinics, namely predominantly chronic conditions such as hypertension and diabetes. All doctors speak Cantonese and 99% of the consultations are conducted in this dialect. To recruit patients, a random number table generated by computer was used to select one doctor (by room number) from all those available for consultation during a particular clinical session. The aim, procedures and nature of the study were explained and written consent was obtained from each subject. Patients were excluded if they were unable to communicate in Cantonese, if they were too ill to complete the interview, or if they refused to take part in the study. Patients did not receive any incentives for participating in the study.

Data Collection

Each subject answered the Chinese (HK) PEI via interview with a trained research assistant, who was not part of usual clinic staff, after the consultation. Information was gathered on purpose of consultation (chronic disease follow-up or acute illness), age, sex, marital status (single, married, divorced, widowed), education level and occupation (according to the British Registrar General’s classification of occupation).\(^{23}\)

All subjects were followed up by telephone two or more weeks after the initial consultation, when the PEI was administered again by a different trained research assistant. Lam previously showed that telephone interviews give similar results on health service utilisation as those found in face-to-face surveys.\(^{30}\)

Outcome Measures and Statistical Analyses

The data of all subjects who had completed the follow up (retest) interviews were included in the analysis of the test-retest reliability. In order to evaluate whether the psychometric properties of the PEI would be affected by the timing of administration, we split the subjects in half for this part of the data analysis. Seventy-six subjects were randomly selected from the 131 who completed the
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

retest to form the sample for the evaluation of delayed administration, and the rest of the 152 who completed the baseline interviews were used as the sample for the evaluation of immediate administration of the Chinese (HK) PEI.

The Chinese (HK) PEI score was calculated by the mean of the scores of the applicable items multiplied by six. Cases that had more than three ‘not applicable’ items were excluded.

Responses of “much better/much more”, “better/ more” and “same or less” were scored 2, 1 and 0, respectively, giving a summation PEI score ranging from 0 to 12. Descriptive statistics were determined, including mean, standard deviation, percentage of floor and ceiling of scores by assessment time.

Test-retest reliability was evaluated by paired t tests on the difference in mean, and also with intraclass correction coefficient (ICC) between test and retest scores. ICC is the recommended test on reproducibility of psychometric measures and the expected standard is ≥0.7. Internal reliability was measured by Cronbach’s alpha coefficient, for which ≥0.7 has been suggested as the standard for group comparison.

The internal construct validity of the PEI items was first evaluated by Spearman’s rho correlation, corrected for overlap, between the item and the scale (total PEI) score; an item should be substantially linearly related (r ≥ 0.4) to the underlying concept (total PEI score) being measured.

Factor analysis using the varimax rotation method was then performed on the item scores to extract factors that had an eigenvalue greater than 1. As all items should measure the same construct of patient enablement one principal component factor was hypothesized, and they should have similar factor loading and correlation. Sensitivity was also explored by known group comparison of the mean scores by age, sex and consultation reason. It has been suggested in the literature that patient
enablement would be higher in patients who are younger, male, and who present for an acute problem.8,17 The sensitivity in detecting a difference between groups was evaluated by two-sample t tests. All data analyses were conducted by SPSS 17.0. Ethics approval was given by HKU/HA HKW IRB reference number, UW 07-226.

RESULTS

Content Validity and Translation Equivalence of the Chinese (HK) PEI

The back translation of the first draft Chinese (HK) PEI was equivalent to the original PEI for all questions and responses, with few exceptions. The review panel found that the literal translation of ‘cope with’ in Chinese (e.g. 應付 or 適應) was linguistically inappropriate when collocated with ‘illness’ (疾病); thus we translated it to the Chinese term that means ‘to face’ (面對), which is close in meaning to the original. In addition, ‘life’ was translated to ‘daily living’. The native English expert (SM) agreed that the back translation of the Chinese (HK) PEI was equivalent in meaning to the original. The cognitive debriefing group was composed of 10 patients, 5 male and 5 female, age 21-74 years (mean 48.4 years), who took 1-6 minutes to complete the test (mean 3.3 minutes). Each item was understood, rated as relevant, appropriate and not difficult, and correctly interpreted by over 80% of respondents of the cognitive interviews. A few subjects found the title of the instrument redundant and did not clearly interpret that the stem statement was asking about a change. In addition, several suggested the separation of the response option “the same or worse (less)” into two (“the same” and “worse (less)” options. Therefore revisions were made to simplify the title, reword the stem question as a question, and to separate the response options to improve the clarity of the instrument.

Acceptability and Completion rate
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

The flow of patient response and follow-up is shown in Figure 1: 203 patients were contacted, of whom 31 patients were excluded because of cognitive or physical impairment (9), inability to speak Cantonese (7), age < 18 years (6), or not accessible by telephone for follow up (9) and 20 refused to take part. 152 (83.1% response rate among those eligible) completed the baseline survey with no missing data. 131 (86% of 152) of the participants completed the telephone follow up interviews, and the median time interval between the two assessments was 15 days (range 14 to 22 days). Data from two subjects at baseline and three subjects on follow up were excluded from further analysis because there were more than 3 N/A responses on their Chinese (HK) PEI.

The characteristics of the study subjects can be seen in Table 1. Most subjects were elderly and of low education and socio-economic class, and more consultations were for chronic disease rather than acute illnesses. Subject characteristics were similar except for the education level between those who completed and defaulted the follow-up interviews, suggesting little systematic bias in the retest results.

Psychometric Properties of the Chinese (HK) PEI

Table 2 shows the distribution of baseline and follow up Chinese (HK) PEI scores. There were few subjects who had the lowest possible (floor) or highest possible (ceiling) scores at baseline, however a relatively high proportion (18.9%) scored at the floor in the follow up assessment. The paired t-test (p <0.124) indicated no difference between the test and retest means, and the test-retest reliability intra-class correlation (ICC) was 0.75, indicating good reproducibility. The Cronbach’s alpha coefficient of internal reliability was 0.84 and 0.85 at baseline and at follow-up, respectively, further supporting the reliability of the PEI.
Table 3 shows the item-scale correlation between each item and the total PEI score by administration time. The correlations were all strong (≥0.65) indicating good internal consistency, in support of the internal construct validity.

Only one factor with eigenvalue greater than one was extracted by factor analysis, which explained over 70% and 67% of the reliable variance of the item scores at baseline and follow-up, respectively. Table 4 shows the factor coefficients and correlations between principal component and the PEI items at baseline and follow-up. Factor loadings of all the items were similar, and correlation between principle component and the Chinese (HK) PEI were strong (0.69-0.8), further confirming internal construct validity.

Table 5 shows the mean PEI scores by age, sex, and consultation reasons for all subjects. Older (aged 60 years or above) subjects had significantly lower mean PEI scores than younger (age 18-59 years) subjects, both at baseline and at follow-up. There was no significant difference in mean PEI score with respect to sex or consultation reason. The PEI score on follow-up was significantly lower than that at baseline in subjects who consulted for chronic diseases, but there was no difference for those consulting for acute illness.

DISCUSSION

We believe this is the first report in the literature on the validity, reliability and other psychometric properties of the PEI in an Asian population. Such evidence is important to support the cross-cultural application of a patient-reported outcome measure. An equivalent translation is an essential although not sufficient step for the application of an instrument to another population with a different culture and language. In our case, an equivalent Chinese translation could be made for all the PEI items and response options. The term most difficult to translate was ‘enablement’ in the
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

title, as this is a relatively new concept in the collective Chinese culture. Nevertheless, our Chinese patients could understand and identify with the indicators (items) of this construct. This further supports the relevance of the concept of enablement in the Chinese culture, as found by an earlier study that enabling programmes led to beneficial outcomes for Chinese patients with chronic disease.27

Our results demonstrated good acceptability of the PEI by Chinese patients with a response rate of 83%, completion rate of 100% and analysable data from 98% of the respondents. The cognitive debriefing interviews showed that all subjects, including elderly ones, could complete the instrument in a few minutes. Most of our subjects were elderly and had a low level of education, which is typical of patients attending public primary care clinics in Hong Kong. We would expect the PEI to be even more acceptable to younger, better educated Chinese patients.

Our mean PEI scores were higher than those found in studies conducted in English speaking patients (3.1) and comparable to studies for patients consulting in other languages (4.5).10 This may be explained by cultural differences in illness coping or response to questionnaires. Howie et al found significantly higher enablement scores in ‘other language patients’,10 while Freeman found higher enablement scores when non-English-speaking patients had consultations in their own language.20 It may not be valid to directly compare the absolute scores between different cultural groups because each may have different life expectations and coping needs. Qualitative exploration on the meaning of the scores from respondents would shed light on any difference in the interpretation and function of the concept of enablement between different cultures.
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

The proportion of subjects scoring the lowest and highest scores were all lower than 20%, which is generally regarded as the threshold for a floor or ceiling effect, suggesting that the Chinese (HK) PEI is potentially sensitive in detecting differences in the outcomes of consultations.

The results of the item-scale correlation and factor analyses supported the internal construct validity of the PEI as a measure of the core concept of patient enablement. All items were relevant and important as shown by the high and almost equal correlations with the total score and the principal factor. The high item-score correlation indicated that not only were the original and Chinese (HK) versions of the PEI similar in language (semantics), but there were also equivalent in function.

The finding of lower PEI scores in the elderly provided some support to the external construct validity of the PEI, which is consistent with existing Western literature. However, there was no difference in PEI score according to reason of consultation contrary to findings in a previous study. One would expect higher enablement scores in those presenting with acute illness, as chronic conditions entail regular follow up, and doctors would assume patients are stable and have acquired knowledge of their condition over time, thereby resulting in less enablement achieved at each subsequent consultation. On the other hand, doctors might see the need to help patients with chronic diseases to cope better. Pawlikowska et al also did not find any effect from case mix on PEI scores.

It should be noted that the findings with relation to those presenting for acute versus chronic conditions need to be interpreted with caution since the ‘acute illness’ group was relatively small. Our study patients presenting with ‘acute’ conditions were instructed to focus on their original acute problem only, however there is a chance that they may have found it difficult to separate ‘acute’ from ‘chronic’ illness, had they also had chronic illnesses. In addition, it may also have been possible
that they had separate consultations (other than those included in the baseline) that might have
affected their responses. Nevertheless, we expected that the number of patients presenting for re-
consultation in the 2 weeks of the study would have been low.

There was no difference in the scores or psychometric performance of the PEI according to timing of
administration (immediately post-consultation compared with delayed for two or more weeks). This
not only supported test-retest reliability, but also the feasibility of measuring patient enablement
with the PEI by telephone up to a few weeks after the consultation. The PEI was originally
developed to be administered immediately post-consultation. Our results indicate that a ‘delayed’
completion of the PEI may be used instead, with beneficial implications for its usage. For patients,
they would not have to spend more time at the clinic in addition to their consultation time duration.
For clinical practice and research, the option of delayed administration of the PEI over the telephone
(or via other means) confers a definite logistical advantage.

It was interesting to note that a higher proportion of subjects had a floor PEI score in the assessment
at two or more weeks, which might imply the enablement perceived immediately after the
consultation was lost with time. This was more apparent in those consulting for chronic diseases
whose mean PEI score also decreased with time. This more likely represented a true change rather
than poor reproducibility. If it were a systematic bias, then the same change should have been
found in all subjects. It is not possible to ascertain whether immediate post-consultation,
compared with delayed PEI administration, represented a more accurate reflection of the ‘truth’, but
conceptually it would take time before a patient could really tell whether he/she had been more
enabled. In addition, some patients might feel obligated to give a more positive response when they
are interviewed immediately after the consultation, especially if they have a good relationship with
the doctor.
Limitations

This pilot study intended to establish the cross-cultural applicability of the PEI in a Chinese population. The results provide preliminary evidence on its internal construct validity and reliability however its construct validity in relation to external criteria has not been firmly established. Our findings on the differences between known groups were inconclusive due to limitations of the sample size and the study setting. There are certain factors documented in the literature to be associated with patient enablement, such as patient age and sex, doctor’s communication, length of consultation, how well the doctor and the patient know each other (proxy for continuity of care) and overall satisfaction of the visit, which were not explored due inherent difficulties in our primary care clinic. For instance, in our setting, patients are usually not seen by the same doctor, and consultation lengths are fairly standard (around eight minutes). Further studies should be carried out to test the construct validity of the PEI and to further examine determinants of patient enablement.

CONCLUSION(S)

The Chinese (HK) version of the PEI is semantically equivalent to the original English language PEI, and our results have supported its acceptability, content and internal construct validity, reliability and sensitivity. As our subjects are of different ages and sex, education levels and social classes, we propose that the PEI is valid for use with the general Hong Kong Chinese population. As all Chinese share the same written language (be it in traditional or simplified form), we hope in the future it can be applied to other Chinese populations worldwide. Further studies should be carried out to evaluate the relationship between PEI scores and other external criteria to confirm its construct validity. Sensitivity in differentiating consultation outcomes in different settings or morbidity groups, and responsiveness to changes with intervention will also need to be established.
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

FUNDING
This work was supported by a research grant from the Tung Wah Group of Hospitals.

ACKNOWLEDGEMENTS
We would like to thank Professor John Howie in giving us permission to adapt the PEI to our Chinese population. Thanks also go to Mr Carlos Wong and Ms Mandy Tai for helping with the data collection and analysis.

ETHICAL APPROVAL
Ethics approval was given by HKU/HA HKW IRB reference number, UW 07-226.

CONFLICT OF INTEREST
None.

REFERENCES

Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

Figure 1. Response and follow-up of patients consulting at Ap Lei Chau Clinic.

Total 203 subjects were approached

152 patients eligible and completed baseline survey
51 patients not included (20 refused, 31 excluded)

131 patients completed retest survey
21 patients Did not complete retest survey

127 patients completed both baseline and retest survey
Table 1. Characteristics of study subjects.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Baseline (n=152)</th>
<th>Follow-up (n=131)</th>
<th>Default Follow-up (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD)</td>
<td>62.1(12.68)</td>
<td>62.1(12.84)</td>
<td>62.2(11.92)</td>
</tr>
<tr>
<td>Age group (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-59</td>
<td>42.1%</td>
<td>42.0%</td>
<td>42.9%</td>
</tr>
<tr>
<td>60 or above</td>
<td>56.6%</td>
<td>57.3%</td>
<td>52.4%</td>
</tr>
<tr>
<td>Missing</td>
<td>1.3%</td>
<td>0.8%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>38.2%</td>
<td>38.2%</td>
<td>38.1%</td>
</tr>
<tr>
<td>Female</td>
<td>61.8%</td>
<td>61.8%</td>
<td>61.9%</td>
</tr>
<tr>
<td>Education level (%)†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td>23.0%</td>
<td>19.1%</td>
<td>47.6%</td>
</tr>
<tr>
<td>Primary</td>
<td>36.2%</td>
<td>40.5%</td>
<td>9.5%</td>
</tr>
<tr>
<td>Secondary</td>
<td>35.5%</td>
<td>35.1%</td>
<td>38.1%</td>
</tr>
<tr>
<td>Tertiary</td>
<td>5.3%</td>
<td>5.3%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Marital status (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>67.1%</td>
<td>67.2%</td>
<td>66.7%</td>
</tr>
<tr>
<td>Widower</td>
<td>17.8%</td>
<td>16.8%</td>
<td>23.8%</td>
</tr>
<tr>
<td>Single</td>
<td>6.6%</td>
<td>6.9%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Divorced</td>
<td>8.6%</td>
<td>9.2%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Occupation (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional</td>
<td>3.3%</td>
<td>3.1%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Associated professional</td>
<td>7.2%</td>
<td>7.6%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Skilled worker</td>
<td>19.7%</td>
<td>19.8%</td>
<td>19.0%</td>
</tr>
<tr>
<td>Semi-skilled worker</td>
<td>16.4%</td>
<td>18.3%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Unskilled worker</td>
<td>27.0%</td>
<td>26.0%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Housewife</td>
<td>23.0%</td>
<td>23.7%</td>
<td>19.0%</td>
</tr>
<tr>
<td>Others</td>
<td>3.3%</td>
<td>1.5%</td>
<td>14.3%</td>
</tr>
<tr>
<td>Consultation reason (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic disease</td>
<td>67.1%</td>
<td>67.9%</td>
<td>61.9%</td>
</tr>
<tr>
<td>Acute illness</td>
<td>32.9%</td>
<td>32.1%</td>
<td>38.1%</td>
</tr>
</tbody>
</table>

† Significant difference between follow-up and default follow-up subjects by Chi-square test (p<0.05).
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

Table 2. Distribution and reliability of baseline and follow-up Chinese (HK) PEI scores.

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD) (95% C.I.)</th>
<th>% Floor</th>
<th>% Ceiling</th>
<th>Cronbach’s α</th>
<th>*Paired t-test P-value</th>
<th>*Test-retest reliability (ICC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (n=150)</td>
<td>4.65(2.76) (4.21-5.10)</td>
<td>6.0</td>
<td>3.3</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up (n=127)</td>
<td>4.22(3.37) (3.63-4.81)</td>
<td>18.9</td>
<td>3.9</td>
<td>0.85</td>
<td>0.124</td>
<td>0.75</td>
</tr>
</tbody>
</table>

ICC: Intraclass correlation

Notes

*Patient Enablement Instrument (PEI) score calculated as mean of answered items times 6, excluding cases that were N/A or missing in > 3 items, range 0 to 12. 2 baseline and 3 follow-up subjects were excluded because cases answered N/A in > 3 items

* Only 127 subjects who had valid PEI scores in both baseline and follow-up assessments were included in the test-retest analyses.

Table 3. Item-Scale correlations of Chinese (HK) PEI.

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean Baseline (n=76)</th>
<th>SD Baseline</th>
<th>Correlation* with total PEI score</th>
<th>Mean Follow-up (n=76)</th>
<th>SD Follow-up</th>
<th>Correlation* with total PEI score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to copy with life</td>
<td>0.61</td>
<td>0.66</td>
<td>0.68</td>
<td>0.55</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Able to understand your illness</td>
<td>0.80</td>
<td>0.67</td>
<td>0.68</td>
<td>0.74</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>Able to copy with your illness</td>
<td>0.77</td>
<td>0.70</td>
<td>0.83</td>
<td>0.74</td>
<td>0.79</td>
<td>0.78</td>
</tr>
<tr>
<td>Able to keep yourself healthy</td>
<td>0.96</td>
<td>0.56</td>
<td>0.75</td>
<td>0.92</td>
<td>0.80</td>
<td>0.76</td>
</tr>
<tr>
<td>Confident about your health</td>
<td>0.86</td>
<td>0.71</td>
<td>0.84</td>
<td>0.89</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>Able to help yourself</td>
<td>0.66</td>
<td>0.60</td>
<td>0.67</td>
<td>0.76</td>
<td>0.75</td>
<td>0.72</td>
</tr>
</tbody>
</table>

* Spearman’s rho correlation, corrected for overlap, were all significant, p<0.001
Table 4. Factor Coefficients and Correlations between Principal Component and Items of Chinese (HK) PEI

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n=76)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor coefficients</td>
<td>Factor correlations</td>
<td>Factor coefficients</td>
<td>Factor correlations</td>
</tr>
<tr>
<td>Able to copy with life</td>
<td>0.183</td>
<td>0.68</td>
<td>0.212</td>
<td>0.73</td>
</tr>
<tr>
<td>Able to understand your illness</td>
<td>0.193</td>
<td>0.71</td>
<td>0.233</td>
<td>0.80</td>
</tr>
<tr>
<td>Able to copy with your illness</td>
<td>0.231</td>
<td>0.85</td>
<td>0.226</td>
<td>0.78</td>
</tr>
<tr>
<td>Able to keep yourself healthy</td>
<td>0.222</td>
<td>0.82</td>
<td>0.218</td>
<td>0.75</td>
</tr>
<tr>
<td>Confident about your health</td>
<td>0.227</td>
<td>0.84</td>
<td>0.225</td>
<td>0.78</td>
</tr>
<tr>
<td>Able to help yourself</td>
<td>0.213</td>
<td>0.79</td>
<td>0.204</td>
<td>0.70</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalue</td>
<td>3.700</td>
<td></td>
<td>3.448</td>
</tr>
<tr>
<td>Total variance explained (%)</td>
<td>61.67</td>
<td></td>
<td>57.46</td>
</tr>
</tbody>
</table>

Table 5. Mean (SD) of PEI summary score by age, gender and consultation reason.

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n=150)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean</td>
<td>SD</td>
<td>ES</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-59</td>
<td>63</td>
<td>5.64*</td>
<td>2.76</td>
<td>0.65</td>
</tr>
<tr>
<td>60 or above</td>
<td>85</td>
<td>3.84*</td>
<td>2.47</td>
<td>0.01</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>58</td>
<td>4.66</td>
<td>2.99</td>
<td>0.35</td>
</tr>
<tr>
<td>Female</td>
<td>92</td>
<td>4.64</td>
<td>2.62</td>
<td>0.01</td>
</tr>
<tr>
<td>Consultation reason</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic disease</td>
<td>102</td>
<td>4.85†</td>
<td>2.95</td>
<td>0.48</td>
</tr>
<tr>
<td>Acute illness</td>
<td>48</td>
<td>4.22</td>
<td>2.28</td>
<td>0.25</td>
</tr>
</tbody>
</table>

ES - effect size

*Significant difference in mean PEI score between age group by independent t-test (p-value <0.01).
†Significant difference in mean PEI score for chronic disease between baseline and follow-up by paired t-test (p-value=0.047).
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

Appendix 1. Draft Chinese (HK) PEI with back-translation used in cognitive debriefing with English back-translations in brackets

勉励病人自强评估量表
(Evaluation Table on Promoting Patients’ Self-strengthening Practice)

看過這次醫生後，你感到......
(After this medical consultation, you feel:-)

(請於每行的其中一個空格內劃“√”號):-
(Please check your answer for each statement)

大為改善　　有所改善　　一樣或少了　　不適用
(greatly improved) (slightly improved) (the same or less) (not applicable)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>0</th>
<th></th>
</tr>
</thead>
</table>
a. 能夠面對生活　　(able to face your life) | |
 b. 能夠了解自己的疾病　　(able to understand your illness) | |
 c. 能夠面對自己的疾病　　(able to live with your illness) | |
 d. 能夠保持自己身體健康　　(able to maintain good health) | |

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>0</th>
<th></th>
</tr>
</thead>
</table>
a. 對自己的健康有信心　　(confident about your health) | |
 b. 擁有自助的能力　　(able to self help) | |

24
Pilot Study of the Validity and Reliability of the PEI in a Chinese Population

Appendix 2. Final Version of the Chinese (HK) of PEI with English back-translations in brackets

病人自強量表
這次見過醫生後，您感到以下的情況有何改變？
(After this medical consultation, what change did you feel with the following) -
(請於每行選出最適合的答案)
(Please check your answer for each statement)

<table>
<thead>
<tr>
<th></th>
<th>大為改善 (greatly improved)</th>
<th>有所改善 (slightly improved)</th>
<th>一樣 (the same)</th>
<th>少了 (less)</th>
<th>不適用 (not applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 能夠應付生活 (able to face your life)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>b. 能夠了解自己的疾病 (able to understand your illness)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 能夠面對自己的疾病 (able to live with your illness)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 能夠保持自己身體健康 (able to maintain good health)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 對自己健康的信心 (confident about your health)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>f. 擁有自助的能力 (able to self help)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

25